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Abstract 

 
The empirical study of network dynamics has been limited by the lack of longitudinal 
data. Here we introduce a quantitative indicator of link persistence to explore the 
correlations between the structure of a mobile phone network and the persistence of its 
links. We show that persistent links tend to be reciprocal and are more common for 
people with low degree and high clustering. We study the redundancy of the associations 
between persistence, degree, clustering and reciprocity and show that reciprocity is the 
strongest predictor of tie persistence. The method presented can be easily adapted to 
characterize the dynamics of other networks and can be used to identify the links that are 
most likely to survive in the future. 

                                                 
* to whom correspondence should be addressed: chidalgo@nd.edu 
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Introduction 
 

Physicists are no strangers to the study of social networks. During the last decade 
several groups have studied the structure of social networks as expressed in e-mails [1,2], 
cellular phones [3,4] and work relationships such as starring on a movie [5] or 
collaborating in a paper [6]. Studying the dynamics of such social systems however, has 
been limited by the lack of longitudinal data and as a result only a few studies on the 
dynamics of interpersonal connections have been produced [1,3,7].    
 

In principle there are many factors that could affect the stability of a social link 
[8, ,9 10]. The aim of this paper is not to determine such factors, but to study the coupling 
between the structure of the network as characterized in previous studies [11,12] and the 
temporal stability of its links.   
 
 Here we use a years worth of mobile phone data as a proxy for the structure and 
dynamics of a social network involving close to two million people. Automatically 
collected communication records have been proposed as a source of reliable data about 
personal connections [13]. Email data has been used to study social processes such as tie 
formation [] and social structure []. The citations patterns of web logs have been used to 
study the spread of political opinions [14] and the growth of an online dating community 
has been documented []. Communication records overcome problems of survey data such 
as subjective biases on the respondents and the intrinsic limitations of ego-centered 
networks, like their unreliability measuring degree and clustering. 
 
 It is not our intention to claim that cellular phone communications fully capture 
social exchange. A social network is expressed through a host of interactions ranging 
from emails to sexual contacts. Cellular phone calls are just one of the ways in which a 
social tie is expressed. People in close social contact tend to express ties through multiple 
interaction channels [15], such as email, cell phone communications,  instant messaging 
and face to face interaction. However, there are arguments favoring the use of cellular 
phone calls as a relevant proxy for large-scale social networks. Specifically, it has been 
shown that objective measures as the one we use in our study can accurately predict self 
reported friendships [16]. The interest of the community has been expressed through the 
recent emergence of a literature on mobile phone networks in which using this and other 
data sets people have studied the strength of social ties in cross sections of the network [] 
and the dynamics of social groups [1,3].  

 
There are also some technical aspects that favor the use of a mobile phone 

network as a proxy for social interactions. Mobile phone numbers are unlisted, thus 
knowing them reveals some sort of social connection between caller and callee. Also, 
cellular phones were the most widespread information technology at the time this data 
was collected; with a penetration larger than 40% worldwide and close to 100% in 
developed countries, like the one considered in this study. During the same time period, 
internet penetration was just over 13% worldwide and 51% for developed countries 
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(MDGS indicators U.N. http://mdgs.un.org/unsd/mdg) making it the most complete 
method to study social interactions on the population scale. In addition, mobile phone 
usage has been particularly democratic to the extent that it has homogeneously penetrated 
different social strata [17] 
  

 Data 
 

Our study is based on mobile phone calls. The data consists of 7,948,890 voice 
calls between 1,950,426 users of a service provider holding approximately 25% of an 
industrialized country's market. The data consist of ten panels collected between April 
15, 2004 and March 31, 2005. Each panel summarizes 15 days of mobile phone calls 
between the members serviced by the provider who facilitated the data. Not every panel 
is available, as this was the way in which data was made available to us. We consider 
only agents that made or received at least one call in each panel to avoid dealing with 
dropouts or new subscribers. We hereafter assume that at high service penetration levels 
(~100%) agents serviced by a particular provider are equivalent to a random sample. In 
our network nodes are mobile phones, which we interpret as people and links are the calls 
connecting them.  

 

Results 

The Persistence of Ties 
 

We measure the stability of ties across time as the number of panels in which a 
link is observed, over the total number of panels. We denote this measure as persistence 
which can be expressed as: 
 

M

TA
P T

ij

ij

∑
=

)(
,                (1) 

 
where Aij(T) is 1 if nodes i and j communicated on panel T and 0 otherwise, whereas M is 
the total number of panels. Persistence is the probability of observing a tie when 
observing a panel of network data. Our definition of persistence has a resolution that 
depends on the duration of the panels. If we consider panels with a duration comparable 
to the one of links, (~ minutes in the case of phone calls), our definition of persistence 
just gives the number of times a tie appeared. Whereas when we consider panels lasting 
considerably longer than the typical duration of a link, our definition of persistence will 
capture the stability of a link on a larger, coarse-grained temporal scale. Our data set 
consists of 10 panels, each summarizing 15 days of voice call activity. Thus we measure 
persistence on a monthly to yearly time scale. 
 

We illustrate our definition of persistence using four different panels of a five 
node network (Fig. 1 a). In this example, the link between nodes 2 and 4 is present in all 
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panels while the one between nodes 1 and 2 is present only in half of them. We say that 
the persistence of the link between nodes 2 and 4 is 4/4 while the persistence of the link 
connecting nodes 1 and 2 is 2/4. Each panel gives a binary representation of the network, 
where a link is either present or not. Our definition of persistence summarizes the 
dynamics of all binary panels by assigning a weight to each link. Thus persistence is a 
change of representation that allows us to study many panels as a single weighted 
network (Fig. 1 b). 
 

Our measure of persistence weakly increases with the number of times a link is 
observed, persistence indicates stability, as understood in previous studies [18,19]. 
However, given that we measure whether the link is observed in N>2 panels, it will not 
describe a link dichotomously as stable or unstable, but will give the degree of stability 
1/N ≤ P ≤ 1, rewarding those links expressed consistently in many panels. 

 
FIG 1 AROUND  HERE 

 
 
Persistence is a tie attribute that can be defined for a particular node as the 

average persistence of all its ties. We denote this as perseverence and define it as 
 

∑=
j

ij
i

i P
k

P 1 ,          (2) 

 
 
where ki is the degree, or number of connections of the ith node. We will use this quantity 
to study what characterizes nodes carrying persistent ties. 
 

Our definition has limitations. One could claim we are unfairly punishing newly 
formed links. An alternative strategy would be to consider only the links involved in the 
first panel; however an exercise in this line showed us that there is a strong selection bias 
towards stable links when we consider such an option. For example, links appearing only 
once, on the second to tenth panel, will not be considered if we set our benchmark on the 
first panel only. Our definition also does not differentiate between links active half of the 
time or those active during a particular half of the year. We do not propose our measure 
as the ultimate way to reduce a set of network panels into a weighted network, but as a 
simple way to do so, allowing us to characterize to first approximation the stability of a 
network’s links. 
 

Results 

Global Analysis of the Persistence of Ties 
 

Figure 2a shows the persistence histogram for the voice call network. The 
distribution is bimodal, meaning that ties tend to be either active most of time or rarely 
expressed. This is known as a core-periphery structure [13], where stable ties compose a 
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person’s social core and unstable ties connect people to the more peripheral actors in their 
life.  
  

FIG 2 AROUND HERE 
 

 
The decay of ties as a function of time can be approximated by a power-function 

(Fig. 2 b), in agreement with the 4-year study performed by Burt [20]. The fact that the 
survival probability of a tie can be approximated by ~t-α with α =0.25±0.07 indicates that 
a great number of ties disappear quickly, while others tend to stay for very long periods 
of time. On average, less than 40% of the ties are conserved after 15 days. After this 
initial drop however, ties disappear slowly and more than 20% of the ties remain after a 
year. We note that the discreetness of our data does not allow us to prove that tie decay 
follows a power-law, yet the graphic analysis can be considered as suggestive evidence 
motivating a hypothesis in this direction. 
 

Network Structure and the Persistence of Ties 
 
Bivariate Analysis 
 

Figure 3 a show a fragment of the mobile call network extracted by considering 
all connections up to 3 links away of a randomly chosen user. Although this example 
shows less than the 0.0008% of our network, it visually summarizes the correlations 
between persistence, perseverance and the topological attributes of the mobile call 
network. In particular, we find that these temporal attributes correlate with topological 
variables such as the number of connection or degree ki, the average reciprocity of a node 
r (fraction of ties containing both, incoming and outgoing calls) and the clustering 
coefficient of a node Ci defined as: 
 

)1(
2
−
∆

=
ii

i kk
C  ,     (3) 

 
where ∆ is the number of triads in which the node is involved. Figure 3b shows a 
histogram of persistence split into 9 different degree categories revealing that persistent 
links represent a large fraction of the connections for low degree nodes while transient 
links are more common for large degree nodes. However, the number of persistent ties 
grows as a function of degree, meaning that although on average the persistence of high 
degree nodes is lower, in absolute terms their core is larger. 
 

Figure 3d shows the distribution of persistence divided by clustering coefficient 
categories, indicating that highly clustered nodes tend to have relatively large cores. In 
the core periphery context, this means that persevering nodes are located in dense parts of 
the social network (Fig. 3a I) while those in sparser parts tend to have non-persistent ties 
acting as bridges which interruptedly connect different parts of the network (Fig. 3a II). 
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Finally, we split the distribution of persistence by reciprocity (figure 3e) and observe that 
nodes with more reciprocated ties tend to be more persistent.  

 
FIG 3 AROUND HERE 

 
Multivariate Analysis 
 

In the previous section we presented a bivariate analysis in which we analyzed the 
effect of three single structural variables and found that persistence depends 
monotonically on all of them (degree, clustering coefficient and reciprocity). The 
observed correlations however, might well be redundant. To check if this is the case we 
perform a multivariate analysis to quantify the effect of each of these variables on the 
persistence of ties. Because of the large number of observations considered (~ 2 million 
nodes, ~8 million ties) the confidence intervals of the regressions do not spread far from 
the predicted values. Hence we concentrate our discussion on the relative magnitude of 
the effects rather than on their significance. 

 
On a social network, it is a well known fact that agents tend to connect to others 

of similar degree significantly more than random [21,22]. It is not known however, 
whether links connecting same degree agents tend to be more stable than those 
connecting different degree agents. To study this effect we performed a regression in 
which we study the persistence of a link as function of the difference in degree of the 
nodes that link connects. Furthermore, we also include in the regression the difference in 
clustering and average reciprocity of nodes connected by a particular link. In addition to 
this, we consider two link attributes, the reciprocity of links R, was there ever a panel in 
which caller and callee reciprocally called each other, and the topological overlap 
associated with that link which is defined as 

  

ji kk
OijjiOT

2

),.(. =  ,     (4) 

 
Where Oij is the number of neighbors that agents i and j have in common and ki 

and kj are their respective degrees. 
 
Together these 5 variables explain 40% of the variance in persistence (Table 1 R2 

= 0.397). The contribution of each one of them can be isolated by considering the partial 
regression coefficients [23], which are a way to quantify how much of the variance is 
explained by each one of the covariates used in a regression. This technique shows that 
assortative mixing is not associated with the persistence of ties. Whereas the reciprocity 
of the links (0 non-reciprocal, 1 reciprocal) explains 26% of persistence followed by 
topological overlap which explains 3.4 % of the variance in persistence. 

 
TABLE 1 AROUND HERE 
 

In the previous section we showed that high degree agents had on average less 
persistent ties than low degree agents. We also saw that highly clustered agents tended to 
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have a larger number of persistent connections and that reciprocal ties tend to be more 
persistent in average. Again, we explore the redundancy of such statements using linear 
regression and split the contribution to perseverance from each of these variables by 
calculating their partial correlations (Table 2). Together, these variables explain almost 
50% of the variance in perseverance (R2=0.49). Their contributions however are quite 
uneven. When we look at the partial correlation coefficients extracted from our linear 
model we find that most correlations vanish and the biggest contribution to perseverance 
is given by the average reciprocity r of an agents ties, which explains 27% of the 
variance. The negative effect of degree of the persistence of an agents ties is still present, 
but greatly ameliorated. This means that high degree agents which reciprocate their ties 
have more persistent ties as well. The negative effect of an agents degree on the 
persistence of its ties is in large part explained by the fact that high degree agents tend to 
reciprocate less of their ties. Similarly, the clustering coefficient C, which appeared as the 
strongest predictor in the bi-variate case, explains only 6% of the variance when 
reciprocity and degree are taken into account. This shows that cliques are formed by 
reciprocal ties minimizing the additional information about persistence carried by cliques 
themselves. 

 
 
TABLE 2 AROUND HERE 
 
 

Predictability: Using topology to infer future ties. 
 

How well can we predict the stability of ties starting from a single panel? As 
mentioned before, persistence is a time-like, vertical variable and is not constrained to 
correlate with space-like, horizontal variables. As we saw from our multivariate analysis, 
structural variables can be redundant [24, 25] and thus it is important to take into account 
their correlations to unveil their real contribution to the persistence of ties. Can we use 
this information to predict which ties persist in time? To answer this question we looked 
at our first data panel and used different criteria to predict which ties will be stable. We 
then looked at the fraction of these ties appearing after 1, 3, 6, 9 and 12 months and 
gauged the accuracy of our predictions by measuring their Positive Predictive Value 
(PPV) defined as:  

FPTP
TPPPV
+

= ,      (5) 

 
where TP is the number of true positives and FP is the number of false positives.  
 

We begin by testing the prediction that all ties observed as reciprocal in the first 
panel will be conserved in the future. For this hypothesis, the PPV ranges from 70% after 
one month to 43% after a year (Fig 4a). For comparison, we picked a random set of ties 
and found a PPV of 35% after a month and 20% after a year.  
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We can improve our predictive power by using a more stringent criterion. If we 
consider all reciprocal links that also have a topological overlap larger than TO ≥ 0.01 we 
improve the PPV of our prediction by 5%, while an even more stringent criterion based 
on a TO ≥ 0.1, gives us an extra percent that allows us to predict with a PPV larger than 
50% after one year. 

 
FIG 4 AROUND HERE 
 
The increase in accuracy brought by more stringent criteria reduces the number of 

links predicted to be persistent. Thus the sensitivity defined as: 
 

FNTP
TPS
+

=        (6) 

 
where FN is the number of false negatives, decreases with the stringency of the criteria 
used but increases with time (Fig. 4 b). Hence there is a tradeoff between the accuracy of 
our prediction and the number of predictions we can make. Using the simple method 
presented above, an increase on accuracy comes with a decrease in sensitivity so more 
accurate predictions can be made only if we accept a reduction in the number of 
predictions being made.  
 

Reciprocity appears to be the best predictor of persistence; however, it is not the 
only one. The fact that the variance explained by other structural variables was redundant 
with that explained by reciprocity allows us to use them as alternative predictor of ties. 
Figure 4a also shows the PPV obtained when we use topological overlap as our only 
predictive criterion. In this case we see that although the accuracy is lower, it is still 
significantly better than random. Thus the redundancy observed in the system can be 
turned into a predictive advantage and in the absence of information about the reciprocity 
of links we can use redundant measures to make good educated guesses about the 
existence of future ties. 

Discussion 
 

We have defined and measured the persistence of ties in a one year period using 
10 panels of data summarizing the activity of all voice calls carried by a mobile phone 
carrier from an industrialized country. We showed that the persistence of ties and 
perseverance of nodes depend on topological variables (degree, clustering, reciprocity 
and topological overlap). In our study, topological variables explain almost half of the 
variance in persistence. The stability of social ties is likely a behavioral attribute, thus it 
is not surprising that the local structure of the social network, that it is likely also a result 
of social behavior, predicts the persistence of ties. 
 
 Social connections ultimately affect processes such as collective decision [26,27] 
and coordinated consumption [28]. But not all social connections are equally important, 
some ties are stronger than others [29]. The strength of a social tie is not an absolute 
measure; hence there is a need to quantify the strength of ties using ad-hoc measures. 
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Persistence is a way to quantify the temporal stability of ties, and therefore their strength, 
in one of the many possible dimensions that tie strength can be quantified. As 
longitudinal data becomes available, methods like the one introduced here can be used to 
quantify the strength of links and ultimately determine its effects on network dynamics.  
 

The relationships shown here demonstrate that the temporal dynamics of social 
interactions are intrinsically coupled to the social network structure in such a way that the 
existence of a tie can be predicted, with a respectable accuracy, using a simple criterion. 
Reciprocity is the stronger predictor of tie stability. If you do not want to loose that 
friend, you should better call him back once in a while. 
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Figure Captions 
 

Fig 1 Definition of Persistence. a Four panels of a five node network in which not all 
links are equally persistent. b Persistence representation of the four panels presented in a. 
 

Fig 2. Persistence across a cellular phone network a Distribution of persistence for all 
links b Fraction of surviving ties as a function of time. The inset shows the same plot in a 

double logarithmic scale. The continuous line is t-1/4

 
Fig 3 Network structure and the persistence of ties a A fragment of the network extracted 

by considering up to the second neighbor of a randomly chosen node (indicated by a 
black arrow). b Distribution of persistence divided into nine degree categories. c Number 
of persistent links defined as those with a persistence of, from top to bottom: 5/10, 6/10, 

7/10, 8/10, 9/10 and 10/10. d Distribution of persistence divided into nine clustering 
categories. e Distribution of persistence divided into five different reciprocity segments. 

 
Fig 4 Predicting future ties a Accuracy of tie prediction by randomly choosing ties 
(orange), choosing reciprocal ties (red), reciprocal ties with a T.O.>0.01 (green), 

reciprocal ties with a T.O.>0.01, ties with a T.O.>0.01 (blue) and a T.O>0.1 (purple). b 
Sensitivity of the predictive methods presented in a. using the same color scheme. 
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Table Captions 
 
Table 1 Persistence of ties and link attributes 
 
 
Table 2 Correlations and regressions between node attributes and perseverance 
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Pearson’s 
Correlation 

∆C ∆k ∆r R TO Persistence

∆C 1 0.023 0.15 0.11 0.23 0.15 
∆k  1 0.02 -0.13 -0.19 -0.16 
∆r   1 -0.68 -0.073 0.033 
R    1 0.2964 0.5886 

TO     1 0.3537 
Regression 
Coefficients 

0.09 0.002 0.15 0.35 0.56  

Partial 
Correlations 

0.0027 0.0032 0.007 0.26 0.034  

 
 
 

Pearson’s 
Correlation 

C K r Perseverance 

C 1 -0.51 0.49 0.64 
k  1 -0.34 -0.45 
R   1 0.62 

Regression 
Coefficients 

0.0598 -0.0122 0.3626  

Partial 
Correlation 

0.062 0.11 0.27  
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ACCEPTED MANUSCRIPT

Pearson’s 
Correlation

C k r R TO Persistence

C 1 0.023 0.15 0.11 0.23 0.15
k 1 0.02 -0.13 -0.19 -0.16
r 1 -0.68 -0.073 0.033
R 1 0.2964 0.5886

TO 1 0.3537
Regression 
Coefficients

0.09 0.002 0.15 0.35 0.56

Partial
Correlations

0.0027 0.0032 0.007 0.26 0.034

Table 1
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ACCEPTED MANUSCRIPT

Pearson’s 
Correlation

C K r Perseverance

C 1 -0.51 0.49 0.64
k 1 -0.34 -0.45
R 1 0.62

Regression 
Coefficients

0.0598 -0.0122 0.3626

Partial 
Correlation

0.062 0.11 0.27

Table 2


