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During social bargain, one has to both figure out the others� intentions and behave strategically in such a way that the others� behaviors will be
consistent with one�s expectations. To understand the neurobiological mechanisms underlying these behaviors, we used electroencephalography while
subjects played as proposers in a repeated ultimatum game. We found that subjects adapted their offers to obtain more acceptances in the last round
and that this adaptation correlated negatively with prefrontal theta oscillations. People with higher prefrontal theta activity related to a rejection did not
adapt their offers along the game to maximize their earning. Moreover, between-subject variation in posterior theta oscillations correlated positively with
how individual theta activity influenced the change of offer after a rejection, reflecting a process of behavioral adaptation to the others� demands.
Interestingly, people adapted better their offers when they knew that they where playing against a computer, although the behavioral adaptation did not
correlate with prefrontal theta oscillation. Behavioral changes between human and computer games correlated with prefrontal theta activity, suggesting
that low adaptation in human games could be a strategy. Taken together, these results provide evidence for specific roles of prefrontal and posterior
theta oscillations in social bargaining.
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INTRODUCTION

To conduct a successful social interaction, people not only have to

figure out their partners’ intentions but also have to plan strategic

behaviors to achieve their goals. Thus, people behave in such a way

that their partners will be able to understand their intentions and adapt

to them. The most used approach to study strategic behavior in social

exchanges is game theory. In these games, players have to take into

account the possible strategies of other participants to make more

accurate decisions (Camerer, 2003; Colman, 2003). The degree of

deep reasoning in these games (e.g. ‘what you think the others think

about what you think’, and so on) has been related to dorsomedial

prefrontal cortex activity (Coricelli and Nagel, 2009). In this line, other

studies have compared games where opponents are able to punish their

partners’ unfair behaviors with those where it is not possible to do so.

The behavioral change in these games, such as behaving fairer when-

ever punishing is possible, indicates strategic behavior. Neurobiological

studies have reported that such behavior correlates with dorsolateral

prefrontal cortex activity (Spitzer et al., 2007) and that the thickness of

this area is related to the implementation of this behavior in childhood

(Steinbeis et al., 2012). Accordingly, the inhibition of this area by

transcranial magnetic stimulation alters the capacity to build a good

reputation (Knoch et al., 2009).

A common game used in these studies is the ultimatum game (UG)

(Güth et al., 1982). This game involves two players, the proposer and

the responder. The proposer makes an offer as to how to split a certain

amount of money between the two players. The responder can either

accept or reject the offer. If the offer is accepted, the money is split as

proposed, but if it is rejected, neither player receives any money.

In both cases, the game usually finishes after one trial. Only few ex-

perimental studies have considered the repeated version of the game

(Slembeck, 1999). Once the game is repeated for the pair, it becomes a

reputation game. A rational proposer, by being unwavering at the

beginning of the game, on the later rounds could benefit from his

unbending stance (Avrahami et al., 2013). Thus, proposers not only

adjust their decisions according to immediate results but also elaborate

long-term strategies to achieve their goals. To study how people im-

plement these long-term strategies and what their neurobiological

underpinnings are, we studied the electroencephalographic (EEG)

activity of proposers in a repeated version of the UG.

In non-social settings, several studies have shown that oscillatory

brain activity in theta range (4–8 Hz) over medial frontal cortex

plays a key role in conflict monitoring and reinforcement learning

(Cohen et al., 2007, 2008; Cavanagh et al., 2010). Thus, an increase

in theta power occurs when people receive a negative feedback or a

monetary loss (Kamarajan et al., 2008; Marco-Pallares et al., 2008;

Lucchiari and Pravettoni, 2010; Van Driel et al., 2012). Interestingly,

theta power is modulated by both the magnitude of monetary loss and

its probability of occurrence (Cohen et al., 2007; Cavanagh et al., 2012)

and is correlated with the subsequent action adjustment (Van de Vijver

et al., 2011). As frontal theta activity has also been associated to stra-

tegic control and conflict monitoring in social contexts (Billeke et al.,

2013; Cristofori et al., 2013), we hypothesized that this activity might

be a candidate for the neural implementation of long-term strategies

for social bargaining. To evaluate whether this strategic behavior is

specifically social, we carried out two tasks. In the main task, people

played with a simulation believing that they were playing with other

human, while in the control task, subjects played with the same simu-

lation but during the game they were instructed that they were playing

against a computer. Thus, in the main task, we expected the subjects to
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play strategically, for instance, changing less their offers with the

expectation that their partners would change their behavior too.

On the other hand, in the control task, where bargaining is not pos-

sible, people would learn quickly the more advantageous offer.

Therefore, we propose that people with more prefrontal theta activity

will behave in a more strategic way in the games with other humans.

METHODS

The data of the main task reported in this article were originally re-

collected for Billeke et al. (2013). All the analyses presented in this

work are new.

Participants

Thirty-nine individuals (22 with 7 women for the main task and

17 with 6 women for the control task) participated for monetary com-

pensation after recruitment online. All participants were right-handed

Spanish speakers, aged from 18 to 25 years (24.31, s.e.m. ¼ 0.41). All

participants had normal vision, no color-vision deficiency, no history

of neurological diseases and no current psychiatric diagnosis prescrip-

tions. All participants gave informed consent and the Ethics

Committee of the Pontificia Universidad Católica de Chile approved

the experimental protocol. All experiments were performed at the

Cognitive Neuroscience.

Main task

Participants played as proposers in a repeated version of the UG

(Figure 1A). Subjects believed they were playing with a human partner,

but they were actually playing with a simulated partner (see below).

Together with the experimenter, participants read the instructions

describing the game. Then, participants were recorded with a digital

video camera for a few seconds and the experimenter informed them

that the recordings would be shown to the other players during the

games. At the beginning of each game, participants watched the fix-

ation cross (fixation phase) and then a video of their partner. All

videos showed full faces of participants in color on a black background.

Each game consisted of 30 rounds and each participant played as a

proposer eight times with different simulated responders. Each round

defined a trial. Each trial had three phases as follows: in the first (offer

phase), the proposer had to make the offer. In the second (response

phase), the offer was revealed to the responder who had to decide

whether to accept or reject it. In the last phase (feedback phase), the

response was revealed to the proposer. At the end of each game, the

Fig. 1 (A) Timeline of a game. Proposers (black box) and responders (gray box, computational simulations, see ‘Methods’ section) played an iterated UG. The proposer makes an offer on how to split 100
Chilean pesos between the responder and himself/herself (offer phase). The responder decides to either accept or reject it (response phase). If the responder accepts the offer, the money is split as proposed, and
if he/she rejects it, the money is lost. The response is shown on the screen during 1 s (feedback phase). Each game consists of 30 iterated offers. In the main task, to make the interaction more realistic, the
proposer watches a video of the responder at the beginning of each game (partner presentation). In the control task, the proposer sees a cue that indicates if his/her partner is a human (‘H’) or computer (‘PC’).
(B) Group correlation between the risk of the offer (logit transforms of the probability of acceptance) and game round. The solid line represents the fitted linear regression, and the dashed line represents the
fitted local regression (LOESS). (C) Distribution of the individual correlation coefficients (between the risk of the offer and the round of the games) across subjects (BAI). (D) Mean of the offer risk in the first and
last 10 offers per subject. (C and D) Subjects were divided as high adaptive (black) and low adaptive (gray) according to their BAI (see ‘Results’ section).
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earnings each player had made in the game were revealed. After the set

of games concluded, the experimenter interviewed each participant

individually to check whether they had understood the game correctly.

The amount of money each participant received depended on his/her

performance with a minimum of 6000 and a maximum of 12 000

Chilean pesos (�12.6–25.2 USD). The task was programmed and pre-

sented using Presentation (Neurobehavioral Systems).

Control task

This task was similar to the main task, although participants were

informed that they were playing with another human (four games)

or with a computer simulation (four games, randomly distributed).

At the beginning of each game, participants watched a cue that indi-

cated if they played with a human (‘H’) or a computer (‘PC’). The

experimenter explained to the participant that the computer simula-

tion assigns a probability to accept or reject the offer given the amount

of money offered, and that this probability might change among the

different games but not during a game. The simulation used in human

and computer games was the same as that used in the main task.

Simulation

Simulations used in the tasks were based on a mixed logistic modeling

of 33 people playing as receptors with other people (for more details,

see Billeke et al., 2013). Using this model, we were able to create dif-

ferent virtual players. All participants (in both tasks) played with the

same simulated partners in random order and with a random assigna-

tion to ‘human’ or ‘computer’ in the control task. Specifically, the

simulation assigns a probability to reject or accept the offer given

the following two equations:

for round xð Þ ¼ 1,

logitðRxÞ ¼ ðb0 þ ri
0Þ þ ðb1 þ ri

1ÞOx ,

and for round xð Þ > 1,

logitðRxÞ ¼ ðb0 þ ri
0Þ þ ðb1 þ ri

1ÞOx

þ ðb2 þ ri
2Þ�Ox þ b2Prx þ b3�OxPrx

where Logit(Ax) is the logit transform of the probability of acceptance

for the round x, Ox the offer, �Ox the change of offer in relation to the

preceding offer and Prx the preceding response. The coefficients esti-

mated for each regressor were composed by a population parameter

(by) and a random effect for each simulated responder (ryi,

y ¼ regressor and i ¼ simulated partner, see Supplementary Material

for a more extended explanation). That the simulation and setting

generated a credible human interaction was verified by: (i) the distri-

butions of acceptances and rejections, and the offering behaviors

related to a rejection in the simulation game were similar to those

obtained in a real human game (see Billeke et al., 2013), suggesting

that simulated responders elicited comparable behaviors in proposers

and (ii) in the post hoc interview, experimenters asked the participant

whether they believed that they had played against a human counter-

part. All participants indicated that they actually believed that they had

played against another human (in the main task), and that they felt the

human games different from the computer games (in the control task).

Psychological tests

Participants were evaluated with a battery of neuropsychological tests

that where administered during a different session. The battery

included the continuum performance test (Cornblatt et al., 1988) to

evaluate sustained attention, the trait-making test (Gaudino et al.,

1995) to evaluate speed of processing, the Wechsler Memory Scale

III (e.g. Tulsky, 2004) to evaluate working memory, the Tower of

London (e.g. Phillips et al., 2001) to evaluate reasoning and problem

solving and the Baron-Cohen’s Face Emotion Recognition Test

(Baron-Cohen et al., 2001) to evaluate social cognition.

Electrophysiological recordings

Continuous EEG recordings were obtained with a 40-electrode

NuAmps EEG System (Compumedics Neuroscan). All impedances

were kept below 5 k�. Electrode impedance was retested during

pauses to ensure stable values throughout the experiment. All elec-

trodes were referenced to averaged mastoids during acquisition, and

the signal was digitized at 1 kHz. Electro-oculogram was obtained with

four electrodes. All recordings were acquired using Scan4.3 and stored

for off-line treatment. At the end of each session, electrode position

and head points were digitalized using a 3D tracking system (Polhemus

Isotrak).

EEG data analysis

EEG signals were preprocessed using a 0.1–100 Hz band-pass filter. Eye

blinks were identified by a threshold criterion of �100�V, and their

contribution was removed from each dataset using principal compo-

nent analysis by singular value decomposition and spatial filter trans-

form. Other remaining artifacts (e.g. muscular artifacts) were detected

by visual inspection of the signal and the trials that contained them

were removed. Thus, we obtained 220 � 20 artifact-free trials per

subject. For the frequency analysis at the sensor levels, epochs were

transformed to current source density (CSD; Kayser and Tenke, 2006).

CSD computes the second spatial derivative of voltage between nearby

electrode sites, acting as a high-pass spatial filter. The CSD transform-

ation highlights local electrical activities at the expense of diminishing

the representation of distal activities. Induced power distribution was

computed using Wavelets transform, with a 5-cycle Morlet wavelet, in

�1 to 1 s windows around the feedback release (padding to 0.5 s). For

all analysis, we used the dB of power related to the fixation phase as

baseline (at the beginning of each game, see Figure 1). This was done to

avoid contamination by expectation before the feedback (e.g. theta

suppression during reward anticipation, Bunzeck et al., 2011).

Source estimations

The neural current density time series at each elementary brain loca-

tion was estimated by applying a weighted minimum norm estimate

inverse solution (Baillet et al., 2001) with unconstrained dipole orien-

tations in single-trials per condition per subject. A tessellated cortical

mesh template surface derived from the default anatomy of the

Montreal Neurological Institute (MNI/Colin27) warped to the indi-

vidual head shape (using �300 headpoints per subject) was used as a

brain model to estimate the current source distribution. We defined

3 � 5005 sources constrained to the segmented cortical surface (three

orthogonal sources at each spatial location), and computed a three-

layer (scalp, inner skull, outer skull) boundary element conductivity

model and the physical forward model (Clerc et al., 2010). The mea-

sured electrode level data XðtÞ ¼ x1ðtÞ, . . . ,xn electrodeðtÞ½ � is assumed to

be linearly related to a set of cortical sources

Y ðtÞ ¼ y1ðtÞ, . . . ,ym sourceðtÞ
� �

(3 � 5005 sources, see above) and addi-

tive noise Y ðtÞ ¼ WXðtÞ ¼ RLTðLRLT þ �2CÞ � 1XðtÞ, where L is the

physical forward model. The inverse solution was then derived as

Y ðtÞ ¼ WXðtÞ ¼ RLTðLRLT þ �2CÞ � 1XðtÞwhere M is the inverse

operator, R and C are the source and noise covariances, respectively,

and � is the regularization parameter. R was the identity matrix that

was modified to implement depth-weighing (weighing exponent: 0.8;

Lin et al., 2006). The regularization parameter � was set to 1/3. To

estimate cortical activity at the cortical sources, the recorded raw EEG

time series at the sensors x(t) were multiplied by the inverse operator
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W to yield the estimated source current, as a function of time, at the

cortical surface: Y ðtÞ ¼ WXðtÞ. Since this is a linear transformation, it

does not modify the frequencies of the underlying sources. It is there-

fore possible to undertake time–frequency analysis on the source space

directly. In this source space, we computed frequency decomposition

using the Wavelets transform. Since we used a small number of elec-

trodes and no individual anatomy for head model calculation, the

spatial precision of the source estimations is limited. To provide

more information about the localization procedure, we show, for all

source estimations, the scalp distribution of activity calculated separ-

ately from the CSD of the electrode space. Finally, to minimize the

possibility of erroneous results we only present source estimations if

there are both statistically significant differences at the electrode level

and the differences at the source levels survive a multiple comparison

correction.

Statistical analysis

For individual and global correlations, we used Spearman’s rho. To

evaluate whether the individual rho values were other than zero, we

used the Wilcoxon signed rank test. To compare between groups of

subjects, we used the Wilcoxon sum rank test. For the theta activity

modeling, we used the robust linear model with MM-estimation and

the Spearman partial correlation. To compare two correlations we used

the Fisher z-transformation. To correct for multiple comparisons in

time–frequency charts and source analysis, we used the Cluster-based

permutation test (Maris and Oostenveld, 2007). Here, clusters of sig-

nificant areas were defined by pooling neighboring bins that showed

the same effect (P < 0.05 in the statistical test carried out in each bin of

either the time–frequency chart or the sources, e.g. Spearman correl-

ation in Figure 2B). The cluster-level statistics was computed as the

sum of the statistics of all bins within the corresponding cluster.

We evaluated the cluster-level significance under permutation distri-

bution of the cluster that had the largest cluster-level statistics. Then, a

permutation distribution of the cluster-level statistics was obtained by

randomly permuting the original data. After each permutation, the

original statistical test was computed (e.g. Spearman correlation),

and the cluster-level statistics of the greatest cluster was calculated.

After 2000 permutations, the cluster-level significance of each observed

cluster was estimated as the proportion of elements of the permutation

distribution greater than the observed cluster-level statistics.

Software

All behavioral statistical analyses were performed in R. The EEG signal

processing was implemented in MATLAB using CSD toolbox (Kayser

and Tenke, 2006), and in-house scripts (available online http://lantool-

box.wikispaces.com/). For the source estimation and head model, we

used the BrainStorm (Tadel et al., 2011) and openMEEG toolboxes

(Gramfort et al., 2011)

RESULTS

Behavior

Throughout the game, subjects offered a mean of 42.6 � 1$ to recep-

tors (modal offer: 50$) and obtained 0.34 � 0.03 rejection rates. We

evaluated whether proposers performed strategic evolutions of their

offers across the rounds of the games, analyzing how the risk of the

offers changed across each game. The risk of the offers was calculated

using the logit transform of the probability of the simulation accepting

the offer. The simulation is different for each responder and is given by

a model of real people behavior (Billeke et al., 2013). Our model takes

into account the sum of money offered, the change of offer related to

the preceding offer and the preceding responder’s response

(see ‘Methods’ section). Using the mean of the risk across subjects

Fig. 2 (A) Time course of theta power related to rejections (lower panel) and related to acceptances
(upper panel) per both high-adaptive (blue) and low-adaptive subjects (red). Areas represent the
s.e.m. of each curve. (B) Time–frequency chart of the time windows when proposers receive a
rejection. The color represents the P-value of Spearman’s correlation between the power spectrum
and the behavioral adaptive index across all subjects (see ‘Results’ section). (C) Spearman’s partial
correlation between theta power and the behavioral adaptive index. (D) Spearman’s partial correl-
ation between theta power and theta dependent change of offer. (E) Spearman’s partial correlation
between theta power and risk dependent change of offer. (B–D) Only significant clusters are shown
(corrected by the cluster-based permutation test). See also Supplementary Figure S2.
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per round, we evaluated the global tendency (Figure 1B). We found a

strong positive correlation between the risk and the round number

(Spearman’s rho ¼ 0.66, P ¼ 1 e�4). Similar results were obtained

using the amount of money offered (rho ¼ 0.44, P ¼ 0.01) and the

acceptance rates (rho ¼ 0.40, P ¼ 0.02).

The overall trend was to make risky offers at the beginning of each

game, and safer offers in the last rounds. To evaluate individual dif-

ferences in this tendency, we carried out the same analysis for each

subject by computing the individual correlation coefficient.

Interestingly, in spite of the global tendency to positive values

(Wilcoxon sign rank test, P ¼ 0.001, Figure 1C), there was great dis-

persion of the individual correlation coefficients. Since each value re-

flects how each subject adapts her/his behavior to her/his partners’

behaviors, we will call this value a behavioral adaptation index

(BAI). Accordingly, we separated proposers into two groups depending

on how they compared to the global tendency. Those subjects whose

BAIs were not significant (i.e. their correlation coefficients were not

statistically significant, P > 0.05) were classified as low adaptive

(n ¼ 13), while those whose BAIs were significant were classified as

high adaptive (n ¼ 9). The high-adaptive subjects obtained higher

earnings than the low-adaptive subjects (Wilcoxon rank sum test,

P ¼ 0.025). In addition, high-adaptive subjects had a marginal ten-

dency to have less variation of their offers across each game (P ¼ 0.06).

The first 10 offers (out of 30) of low-adaptive subjects were undistin-

guishable from those of high-adaptive subjects (P > 0.5; Figure 1D). In

spite of the great inter-individual dispersion in the first 10 offers, the

offer risks of the high-adaptive group converged in the last 10 rounds.

Here high-adaptive subjects made offers with a high probability of

acceptance (mean logit ¼ 1.15, probability ¼ 0.76) that were higher

than that of low-adaptive subjects (P ¼ 0.011).

Finally, we assessed for demographic or cognitive differences be-

tween groups. There were no differences in either age (P ¼ 0.26) or

socio-economic status (P ¼ 0.68). In the general, non-social cognition

tests (attention, memory, executive functions and planning; see

Supplementary Table S1), we did not find differences between

groups. However, the low-adaptive group presented a higher score in

the face emotion recognition test (P ¼ 0.02), which measures social

cognition. In all subjects, this test’s score correlated with the BAI

(rho ¼ �0.57, P ¼ 0.005).

EEG

We evaluated whether the degree of adaptive behavior correlates with

frontal oscillatory activity. We used the BAI (the individual correlation

between the offer risk and the round) as an indicator of individual

long-term adaptive behavior. First, we explored differences in theta

activity elicited by the feedback between subjects with high BAI

(high-adaptive subject) and those with low BAI (low-adaptive sub-

jects). Only upon rejections did low-adaptive subjects present more

theta activity (4–8 Hz). Notably, we found a specific correlation be-

tween the amplitude of theta oscillatory activity elicited by rejections

(4–8 Hz, 0.3–0.5 s after negative feedback, fronto-medial electrodes)

and the BAI (Figure 2B, P < 0.01, Wilcoxon sign rank test and clus-

ter-based permutation test). This means that people with lower pre-

frontal theta power elicited by a rejection, adapted their offers

obtaining more acceptances in the last round of each game. In a pre-

vious study, we showed that theta power was related to the change of

offer after a rejection in a within-subject analysis (Billeke et al., 2013).

People tended to increase their offers after a rejection. This offer in-

crease was correlated positively with the risk of the offer and negatively

with the theta activity elicited by the rejection. Thus, to obtain an

individual measure of this tendency, we calculated, per each subject,

the Spearman’s correlation between pre-frontal theta power elicited by

a rejection and the next change of offer (theta-dependent change of

offer, using FCz electrode where our previous analysis had identified

the peak of this correlation (Billeke et al., 2013), mean rho

value ¼ �0.13, Wilcoxon sign rank test, P ¼ 2e�4). In the same

way, we calculated the individual correlation between the risk of the

offer and the change of the offer after a rejection (risk-dependent

change of offer, mean rho value ¼ �0.53, P ¼ 4e�5).

Then, to clarify the meaning of the between-subject variations of

theta power, we first performed a multiple robust regression of theta

power in the FCz electrode (Table 1) with several regressors as follows.

First, we used the BAI to evaluate the relation between theta and the

tendency to make safer offers in the last round of each game. Second,

to evaluate the relation between the variation of theta power and how

each subject reacted to a rejection, we used the mean of the change of

offer after a rejection per each subject, the individual theta-dependent

change of offer and the individual risk-dependent change of offer (see

above). As theta power depends on the risk of the rejected offer, people

who make risky offers have less theta power; hence people with greater

BAI (who make risky offers at the beginning of the games) may have as

a consequence less theta power. To rule this out, we included in the

model the risk of the rejected offer and the rate of rejected offers per

subject as control variables. Interestingly, the correlation between theta

power and the BAI remained negative and significant (Table 1). In this

model, the relation between theta power and the change of offer is also

negative and significant, whereas the relation between theta power and

theta-dependent change of offer is positive and significant.

We next computed the Spearman’s partial correlation among the

preceding variables for each electrode (Figure 2B–D) and each cortical

source, to obtain an approximation of the cortical localization of these

activities. We found a negative correlation between theta activity and

BAI in the FCz and Fz electrode. The probable sources of this activity

were located in the dorsal anterior cingulate cortex (dACC) and in the

superior frontal gyrus (Brodmann’s areas 8 and 24). In addition, the

correlation between theta power and the theta-dependent change of

offer was found at electrodes P4, Pz and P3. The source for this cor-

relation was located in the precuneus/posterior cingulate cortex (PCC,

Brodmann’s areas 23 and 31). The correlation between theta and the

risk-dependent change of offer was found at electrode TP8; its source

was in the posterior temporal region.

Interestingly, the partial correlation also shows that BAI correlated

positively with the theta-dependent change of offer (rho ¼ 0.6,

P ¼ 0.009, FCz electrode) and negatively with the change of offer

after a rejection (rho ¼ �0.65, P ¼ 0.004, FCz electrode). These results

indicated that people with more theta power tend to maintain their

offer across the game, in spite of the responders’ rejections. Finally, we

evaluated the relation between social cognition capacity, adaptive be-

havior and the oscillatory activity. We carried put a partial correlation

between emotion recognition test, BAI, prefrontal theta and the indi-

vidual earnings. BAI was correlated with both emotion recognition test

(rho ¼ �0.58, P ¼ 0.005) and theta activity (rho ¼ �0.56, P ¼ 0.007),

Table 1 Multiple robust regression of prefrontal theta power after a rejection

Regressor Beta (s.e.) t-Value P-value

Intercept �12.8 (2.8) �4.6 0.0003
BAI �8.4 (2.0) �4.3 0.0007
Change of offer in the next round �0.4 (0.1) �3.1 0.0074
Theta-dependent change of offer 9.1 (3.1) 2.9 0.0095
Risk-dependent change of offer 0.2 (2.5) 0.1 0.9
Rejection rate �12.7(9.3) �1.3 0.19
Risk of the rejected offers 12.1 (10.3) 1.1 0.25
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although theta activity was not correlated with emotion recognition

test (rho ¼ �0.12, P ¼ 0.14). We did not find any significant correl-

ation with the individual earnings.

Control task

The above results indicated that subject with less theta activity adapted

less their offers throughout the game. This can be due either to a poor

learning of the game dynamics, or to a strategy based on the expect-

ation that the other player will change his/her behavior before one

does. To evaluate this, we carried out a control task where people

believed they played four games against human partners and four

games against computer simulations (see ‘Methods’ section).

Crucially, human and computer games were both simulations, but in

the computer games subjects knew that the computer would not

change the rejection probability during each game. In both games

subjects offered similar amount of money (human: 42.0 � 1.4, PC:

39.6 � 1.2, Wilcoxon test, P ¼ 0.14) and obtained similar rejection

rates (human: 0.36 � 0.04, PC: 0.44 � 0.6, P ¼ 0.4). They also had the

global tendency to make safer offers toward the end of each game (PC:

rho ¼ 0.85, P ¼ 6e�7; human: rho ¼ 0.56, P ¼ 0.001; difference:

Z ¼ 2.39, P ¼ 0.016), although in the computer games the slope was

greater during the first rounds and reached a plateau in the last rounds

(Figure 3A). Then, we calculated the difference between the risk offer

made in computer games and that made in human games, per round.

In accordance with the preceding results, this difference had a signifi-

cant correlation with the round number (rho ¼ 0.76, P ¼ 2e�6).

Next, we evaluated the relation between BAI and prefrontal theta

oscillation in both computer and human games during the control

task. In both cases, we used a partial correlation to control for a pos-

sible effect of the risk of the rejected offers. Notably, in human games

the correlation was significant (rho ¼ �0.73, P ¼ 5e�5), while it was

not significant in computer games (rho ¼ �0.19, P ¼ 0.4; differences:

Z ¼ �2, P ¼ 0.045). This difference was apparent mainly for the

behavioral change in the human game, as there was a significant cor-

relation between the change in the BAI (human game BAI – computer

game BAI) and the theta power in human game (canonical correlation:

rho ¼ �0.77, P ¼ 3e�4; partial correlation controlled by the risk of the

rejected offer in human games: rho ¼ �0.74, P ¼ 9e�4).

DISCUSSION

When people become involved in a social negotiation, they have to

infer other people’s intentions from their behavior and signal their

own intentions back to them. In our study, subjects played as pro-

posers with simulated responders, believing that they were interacting

with other humans. These simulated responders did not change or

adapt their ‘intentions’ during successive iterations of the game (e.g.

the threshold for accepting/rejecting the offers). Therefore, subjects

had to adapt their offers to the simulation’s behavior to obtain

higher earnings. In fact, behavioral results show that, at the group

level, proposers adapt their offers toward the last round of the game

(Figure 1). People who do not fit this tendency have increased pre-

frontal theta activity when compared to those that do. Previous studies

have associated prefrontal theta activity with reward-based learning,

where theta power is related to behavioral adaptations (Cavanagh

et al., 2010). However, we found that people who adapt their offers

to their partners’ behaviors had less prefrontal theta power. At the

within-subject level, theta activity is related to both unexpected results

and subsequent adaptive behaviors during a social negotiation (Billeke

et al., 2013). Prefrontal theta activity is probably originated in the

ACC, an area that has been related to conflict monitory between com-

peting responses (Botvinick et al., 1999), prediction error (Brown and

Braver, 2005) and linking reward information to action (Hayden and

Platt, 2010). Recently, the ACC has been related to competitive efforts

in social context (Hillman and Bilkey, 2012), and theta oscillations in

this area increase amplitude when a social rejection occurs (Crowley

et al., 2010; Cristofori et al., 2013).

Our results indicate that people who do not adapt their behaviors

present more prefrontal theta activity evoked by a rejection. In a ne-

gotiation, people will not only adjust their own intentions but will also

expect that their partners do so to achieve a mutual agreement.

Interestingly, in the control task, when people played with computer

partners and were informed that these would not change the rejection

probability during a game, the BAI did not correlate with prefrontal

theta oscillation. Thus, when change in others’ behavior is ruled out,

there is no correlation between BAI and prefrontal theta. Indeed, in

this context, people adapt their offer in order simply to maximize their

profit. Thus, the greater prefrontal theta activity in low-adaptive

players seems not to be related with poor learning; it could rather

Fig. 3 (A) Correlation between the offer risk (logit transform of the probability of acceptance) and the round number for both human (black) and computer (red) games. (B) Correlation between the differences
in the BAI in human and computer game and the theta power in FCz electrode. (A and B) Solid lines represent the fitted linear regression, and dashed lines represent the fitted local regression (LOESS).

6 of 8 SCAN (2014) P.Billeke et al.

 by guest on M
arch 12, 2014

http://scan.oxfordjournals.org/
D

ow
nloaded from

 

T
Emotion Recognition
=-
p=
method
H
+-
+-
p=
H
+-
+-
p=
s
=
p=
-
H
=
p=
=
p=
see 
=
p=
-
=-
p=
-
=-
p=
=-
p=
since
=-
p=
-
=-
p=
-
Discussion
``
''
.,
s
),
; Crowley etal., 2010).  
,
in order 
-
http://scan.oxfordjournals.org/
http://scan.oxfordjournals.org/


represent the tendency to expect others to accommodate to their own

intentions regardless of the behavioral feedback. In addition, we found

that people with this tendency score highly in a social cognition test

measuring the capacity to understand the others’ mental state.

However, the score in this test did not correlate with prefrontal

theta activity. This may suggest that these subjects read accurately

the others’ intentions and may use this information to behave stra-

tegically, expecting the others to give up to their whims. However,

prefrontal theta activity is related to the strategy and not directly to

this social cognition skill. An alternative interpretation would be that

low-adaptive subjects pay less attention to the task. Nonetheless, we

believe this is not the case for the following reasons: first, low-adaptive

subjects did not differ from high-adaptive subjects on attention,

memory and planning tests. Second, people tend to behave less adap-

tively when they believe that they are facing a human (in contrast to a

simulation), suggesting that this change is a strategy to engage in

human bargaining. Finally, low-adaptive subjects present more frontal

theta activity. Several studies have shown that theta activity increases

with conflict detection, prediction error (Cavanagh et al., 2010), atten-

tion (Missonnier et al., 2006) and task difficulty (e.g. Gomarus et al.,

2006), and decreases with distraction (Zhang et al., 2013). Therefore, if

subjects where paying less attention to the task, they should have had

less theta activity.

In addition to prefrontal theta, posterior theta activity is related to

how people change their offers after a rejection. Interestingly, this ac-

tivity probably originates from the medial parietal region that includes

the precuneus and the PCC. These regions are related to perspective

taking, autobiographic memory (Maddock et al., 2001) and empathy

processes (Zaki and Ochsner, 2012). Recently, the PCC has been

related to both the implementation of novel behavior responses to

diverse environmental demands and the adaptive use of these behav-

iors in response to environmental change (Pearson et al., 2011). Thus,

people playing with a partner that does not change her/his behavior

need to adjust their own strategy (e.g. offer more money than they

originally intended) to increase their profits. Therefore, the posterior

theta activity could reflect the implementation of a change in behav-

ioral policy.

The results presented here provide novel evidence of the role of theta

oscillations in social interactions, showing specific functions for anter-

ior and posterior theta activity. On one hand, anterior theta (and

probably ACC) activity reflects error signaling concerning the others’

behaviors, but not necessarily the adaptation to them. Moreover, this

error signal reflects the expectancy that the other will adapt his/her

behavior to one’s needs. On the other hand, posterior theta (and prob-

ably PCC/precuneus) activity reflects the process of behavioral adap-

tation to the others’ demands. Thus, these two activities could reflect

the neurobiological processes underlying the trade-off between giving

in to others’ demands and the expectation that others give in to ours.

SUPPLEMENTARY DATA

Supplementary data are available at SCAN online.
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