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Abstract

Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are
the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In
spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social
interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the
Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-
clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The
strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these
modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals’ alpha network structure
correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power
and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social
interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase
synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt
ongoing behavior in socially demanding contexts.
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Introduction

In daily life, we spend an great deal of time dealing with social

dilemmas [1]. A crucial characteristic of such situations is that

goals that tend to clash can co-exist with the consequence of

making an analytical approach non-trivial [2]. Naturally, then,

when people face social dilemmas, several cognitive processes must

be recruited. Neurobiological studies have identified several brain

areas which underlie different functions supporting our capacity to

maintain a social interaction and solve social dilemmas [3,4].

Rather than having specific and isolated functions, it has been

proposed that these areas work as a network which requires a

rapid, efficient, adaptive interaction among them and with other

domain-general networks [5,6]. Thus social processing, like

empathy [7] and imitation [8], has been shown to generate an

increase in the connectivity among different brain areas. In spite of

this evidence, it remains unknown whether specific changes in

functional connectivity of the brain networks are related to social

behavior. Indeed, a recent study shows that flexible organization

in connectivity patterns of fronto-parietal network is related to our

capacity to adapt our cognitive resources according to the task

demands [9]. Thus, we hypothesize that during social interactions,

a particular functional reorganization of brain functional connec-

tivity takes place, and that this reorganization is reflected in the

dynamics of the cortical networks as estimated by inter-site-phase-

clustering between brain sources.

Empirical studies have led to the hypothesis that functional

neural assemblies are largely distributed and linked to form a web-

like structure in the brain [10]. Within this framework, brain

regions are conceived as partitioned into a collection of modules,

representing functional units that are separable from -but related

to- the functions of other modules. Detecting the modular brain

structure may be crucial to understanding the structural and

functional properties of neural systems during social interactions.

To evaluate this possibility, we used Graph Theory analysis of the

electroencephalographic (EEG) activity of human subjects while

they played a standard behavioral economics game that recreates

a social dilemma of bargaining, namely the repeated version of the

Ultimatum Game (Figure 1) [11,12]. The game involves two

players, namely the proposer and the responder. The proposer

makes an offer as to how to split a certain amount of money

between the two players. The responder can either accept or reject

the offer. If the offer is accepted, the money is split as proposed,

but if it is rejected, neither player receives any money. Crucially,

during this repeated interaction, proposers have to predict the

most probable behavior of the responders to estimate the risk of
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their actions and adapt their own behavior accordingly [13]. To

make this behavioral prediction, it is necessary to recruit brain

networks that participate in social processing to figure out the

other players’ intentions (e.i., Mentalizing) [14].

Methods

Twenty-five individuals (11 women) participated for monetary

compensation after online recruitment. Seventeen subject data

were originally recollected for the control task of a previous work

[15]. All the analyses presented here are new. All participants were

right-handed Spanish speakers, aged from 20 to 37 years

(M = 25.31, SEM = 0.71). All participants had normal or correct-

ed-to-normal vision, no color-vision deficiency, no history of

neurological diseases, and no current psychiatric diagnosis or

psychotropic prescriptions. All participants provided their written

informed consent to participate in this study and the Ethics

Committee of the Pontificia Universidad Católica de Chile

approved the experimental protocol. All experiments were

performed at the Cognitive Neuroscience Laboratory of the

Department of Psychiatry of the University.

Task
Participants played as proposers in a repeated version of the

Ultimatum Game (see Figure 1). Subjects believed they were

playing either with a human partner or a computer partner, but

they were actually always playing with a computational simulation

(see below). Participants began their participation by reading on-

screen instructions describing the game. At the beginning of each

game, participants watched the fixation cross (10 seconds, fixation

phase). Then, a signal on the screen indicated whether the game

was against a computer (‘‘PC’’) or a human (‘‘H’’) partner. Each

game consisted of 15 rounds and each participant played as a

proposer 32 times with different simulated responders (16 human

games and 16 computer games, randomly distributed). For

computer games, the experimenter explained to the participant

that the computer simulation assigned a probability to accept the

offer given the amount of money offered (a direct relation), and

that this probability could change between different games but not

during a game with the same computer partner. Importantly, the

simulation used in human and computer games was the same.

Each trial had three phases as follows: In the first (offer phase,

variable duration), the proposer had to make the offer. In the

second (anticipation phase, 1.5–4 seconds), the proposer waited

for the response of the partner. In the last phase (feedback phase,

1 second), the response was revealed to the proposer. At the end of

each game, the earnings each player had made in the game were

revealed. After the set of games concluded, the experimenter

interviewed each participant individually in order to check

whether they had understood the game correctly. The amount

of money each participant received depended on his/her

performance in one of the 32 games chosen randomly, and

ranged from 6,000 to 12,000 Chilean pesos, 12 to 24 USD

approximately.

Simulation
Simulations used in the tasks were based on a mixed logistic

modeling of 33 people playing as receptors with other people (for

more details see [13]). Using this model, we were able to create

different virtual players. All participants played with the same

simulated partners. Specifically, the simulation algorithm assigns a

probability to reject or accept the offer given the following two

equations:

for round (x) = 1,

logit(Rx)~(b0zri
0)z(b1zri

1)Ox

and for round (x) .1,

logit(Rx)~

(b0zri
0)z(b1zri

1)Oxz(b2zri
2)DOxzb2Prxzb3DOxPrx

where logit(Rx) is the logit transform of the probability of

rejection for the round x, Ox the offer, DOx the change of offer in

relation to the preceding offer, and PRx the preceding response.

The coefficients for each regressor were composed by a population

parameter (by) and a random effect for each simulated responder

(ry
i, y = regressor and i = simulated partner). The simulation and

experimental setting generated a credible human interaction for

the following reasons: (1) The distributions of acceptances and

rejections, and the offering behaviors related to a rejection in the

simulation game were similar to those obtained in a real human

game [13], suggesting that simulated responders elicited compa-

rable behaviors in proposers. (2) During post hoc interviews,

experimenters asked participants whether they believed that they

had played against a human counterpart. All participants

indicated that they actually believed that they had played against

another human and that they felt the human games different from

Figure 1. Timeline of a game. Proposers (black box) and responders (gray box, computational simulations, see Methods) played a repeated
Ultimatum Game. The proposer makes an offer on how to split 100 Chilean pesos between the responder and himself/herself (offer phase). The
responder decides to either accept or reject it (response phase). If the responder accepts the offer, the money is split as proposed, and if he/she
rejects it, the money is lost. The response is shown on the screen during 1 s (feedback phase). Each game consists of 15 offers. At the beginning of
each game, the proposer sees a cue that indicates if his/her partner is a human (‘‘H’’) or computer (‘‘PC’’).
doi:10.1371/journal.pone.0109829.g001
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the computer games. We used the logit(Rx) to the quantification

of the risk per each offer made.

Electrophysiological Recordings
Continuous EEG recordings were obtained with a 40-electrode

NuAmps EEG System (Compumedics Neuroscan). All impedances

were kept below 5 kV. Electrode impedance was retested during

pauses to ensure stable values throughout the experiment. All

electrodes were referenced to averaged mastoids during acquisi-

tion and the signal was digitized at 1 kHz. Electro-oculogram was

obtained with four electrodes with both vertical and horizontal

bipolar derivation. All recordings were acquired using Scan 4.3

(Compumedics Neuroscan) and stored for off-line treatment. At

the end of each session, electrode position and head points were

digitalized using a 3D tracking system (Polhemus Isotrak).

EEG Data Analysis
EEG signals were preprocessed using a 0.1–100 Hz band-pass

Butterworth filter (third-order, forward and reverse filtering). Eye

blinks were identified by a threshold criterion of 6100 mV, and

their contribution was removed from each dataset using principal

component analysis by singular value decomposition and spatial

filter transform using Scan 4.3 (Compumedics Neuroscan). Other

remaining artifacts (e.g., muscular artifacts) were detected by visual

inspection of the signal and the trials that contained them were

removed. After this procedure, we obtained 424633 artifact-free

trials across the subjects. Time frequency (TF) distributions were

obtained by means of the wavelet transform, between –1.5 and

1.5s. We displayed the result only for –1 to 1 s over the segmented

signals to avoid edged artifact. A signal x(t) was convolved with a

complex Morlet’s wavelet function defined as

w(t,f0)~Ae{t2=2s2
t ei2pf0t. Wavelets were normalized and thus

A~(st

ffiffiffi
p
p

){1=2 the width of each wavelet function m~fo=st

was chosen to be 7; where sf ~
1

2
pst. TF contents was

represented as the energy of the convolved signal:

E t,foð Þ~Dw t,foð Þ6x tð ÞD2. Thus, we obtained the phase and

amplitude per each temporal bin (in steps of 10 ms) and frequency

(from 4 to 30 Hz in step of 1 Hz). We used for analysis only the 90

riskiest and the 90 safest offers per subject and condition, in order

to ensure equal number of trials for statistical comparison. For all

power spectrum analysis, we used the dB of power related to a

baseline during the fixation phase (ten seconds at the beginning of

each game, Figure 1).

Source Estimations
The neural current density time series at each elementary brain

location was estimated by applying a weighted minimum norm

estimate inverse solution [16] with unconstrained dipole orienta-

tions in single-trials. A tessellated cortical mesh template surface

derived from the default anatomy of the Montreal Neurological

Institute (MNI/Colin27) wrapped to the individual head shape

(using ,300 headpoints per subject) was used as a brain model to

estimate the current source distribution. We defined 36390

sources constrained to the segmented cortical surface (3 orthog-

onal sources at each spatial location, avoiding deep and basal

structures since the sensitivity of the EEG signal to the activity of

those structures is poor), and computed a three-layer (scalp, inner

skull, outer skull) boundary element conductivity model and the

physical forward model [17]. The measured electrode level data

X tð Þ~ x1 tð Þ, � � � ,xn electrode tð Þ½ � is assumed to be linearly related to

a set of cortical sources Y (t)~ y1(t), � � � ,ym source(t)½ � and additive

noise N(t) : X (t)~LY (t)zN(t), where L is the physical forward

model. The inverse solution was then derived as

Y (t)~WX (t)~RLT (LRLTzl2C){1X (t) where W is the inverse

operator, R and C are the source and noise covariances respectively,

the superscript T indicates the matrix transpose, and l2 is the

regularization parameter. R was the identity matrix that was

modified to implement depth-weighing (weighing exponent: 0.8

[18]), The regularization parameter l was set to 1/3. To estimate

cortical activity at the cortical sources, the recorded raw EEG time

series at the sensors x(t) were multiplied by the inverse operator W to

yield the estimated source current, as a function of time, at the

cortical surface: Y (t)~WX (t). Since this is a linear transformation,

it does not modify the spectral content of the underlying sources. It is

therefore possible to undertake time–frequency analysis on the

source space directly. Finally, we reduced the number of sources by

keeping a single source at each spatial location that pointed into the

direction of maximal variance. To this end, we applied a principal

component analysis to covariance matrix obtained from the 3

orthogonal time series estimated at each source location. This

resulted in a single filter for each spatial location that was then

applied to the complex valued data to derive frequency specific

single trial source estimates. Since we used a small number of

electrodes (40) and no individual anatomy for head model

calculation, the spatial precision of the source estimations are

limited. In order to minimize the possibility of erroneous results we

only present source estimations if there are both statistically

significant differences at the electrode level and the differences at

the source levels survive a multiple comparison correction.

Functional Network
We consider the functional links in brain signals defined via the

phase-locking value (PLV) computed between all pairs of

electrodes or brain sources [19]. The PLV measures the inter-

site-phase-clustering. To compute the PLVs, we used a complex

Morlet’s wavelet function of 7 cycles. By means of this complex

wavelet transform, an instantaneous phase wtr
i (t,f ) is obtained for

each frequency component of signals i (electrodes or sources) at

each trial (tr). The PLV between any pair of signals (i,k) is inversely

related to the variability of phase differences across trials:

PLVik(t,f )~
1

Ntr
D
XNtr

tr~1

exp
j(wtr

i
(t,f ){wtr

k
(t,f ))D

where Ntr is the total number of trials. If the phase difference varies

little across trials, its distribution is concentrated around a preferred

value and PLV,1. In contrast, under the null hypothesis of a

uniformity of phase distribution, PLV values are close to zero.

Finally, to assess whether two different nodes are functionally

connected, we calculated the significance probability of the PLVs by

a Rayleigh test of uniformity of phase. According to this test, the

significance of a PLV determined from Ntr can be calculated as

p~ exp({NtrPLV2) [20]. To correct for multiple testing, the False

Discovery Rate (FDR, q,0.05) method was applied to each matrix

of PLVs. In the construction of the networks, a functional

connection between two brain sites was assumed as an undirected

and weighted edge (functional connectivity strength between node

wij = PLVij, for significant links and wij = 0 otherwise). We

calculated the strength of inter-site-phase-clustering for each node

(electrode or source) as the sum of all significant PLVs of that node.

Network partitions
To partition the functional networks in modules, we used a

random walk-based algorithm [21]. This data-driven approach is

Alpha Band Network in Social Bargaining

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e109829



based on the intuition that a random walker on a graph tends to

remain into densely connected subsets corresponding to modules.

To find the modular structure, the algorithm starts with a partition

in which each node in the network is the sole member of a module.

Modules are then merged by an agglomerative approach based on

a hierarchical clustering method. At each step the algorithm

evaluates the quality of partition Q, which compares the

abundance of edges lying inside each community with respect to

a null model. The modularity of a given partition is defined as,

Q~
PM

s~1 =L{ ks=2Lð Þ2
h i

where M is the number of modules,

L is the total number of connections in the network, ls is the

number of connections between vertices in module s, and ks is the

sum of the degrees of the vertices in modules. The partition that

maximizes Q is considered as the partition that better captures the

modular structure of the network. Further details can be found in

[22,23].

To evaluate the agreement between community structures we

use the Rand index [24], which is a traditional criterion for

comparison of different results provided by classifiers and

clustering algorithms, including partitions with different numbers

of classes or clusters. For two partitions P and P’, the Rand index is

defined as R~
(azd)

(azbzczd)
; where a is the number of pairs of

data objects belonging to the same class in P and to the same class

in P’, b is the number of pairs of data objects belonging to the same

class in P and to different classes in P’, c is the number of pairs of

data objects belonging to different classes in P and to the same

class in P’, and d is number of pairs of data objects belonging to

different classes in P and to different classes in P’. The Rand index

has a straightforward interpretation as a percentage of agreement

between the two partitions and it yields values between 0 (if the

two partitions are randomly drawn) and 1 (for identical partition

structures).

Statistical analysis
For pair comparison and correlation, we used non-parametric

tests (Wilcoxon and Spearman correlation). For multiple regres-

sions, we used robust linear regression. To correct for multiple

comparisons in time-frequency chart and sources, we used the

Cluster-based permutation test for the EEG data [25]. In the latter

method, clusters of significant areas were defined by pooling

neighboring sites (in the time-frequency chart) that showed the

same effect (p,0.05). The cluster-level statistics was computed as

the sum of the statistics of all sites within the corresponding cluster.

We evaluated the cluster-level significance under the permutation

distribution of the cluster that had the largest cluster-level statistics.

The permutation distribution was obtained by randomly permut-

ing the original data. After each permutation, the original

statistical test was computed (e.g., Wilcoxon), and the cluster-level

statistics of the largest cluster resulting was used for the

permutation distribution. After 1,000 permutations, the cluster-

level significance for each observed cluster was estimated as the

proportion of elements of the permutation distribution greater

than the cluster-level statistics of the corresponding cluster.

Software
All behavioral statistical analyses were performed in R. The

EEG signal processing was implemented in MATLAB using in-

house scripts (LAN toolbox, available online at http://lantoolbox.

wikispaces.com/, e.g. [26]). For the source estimation and head

model, we used the BrainStorm [27] and openMEEG toolboxes

[28].

Results

Behavior
Subjects in both human (HGs) and computer games (CGs)

made comparable offers in the amount of money (HG = $42.5;

CG = $42.3, Chilean pesos; Wilcoxon signed rank test; p = 0.78)

and risk (measured as the logit of the probability to acceptance;

HG = 0.89; CG = 0.86; p = 0.9). Like in our previous work, we

found a strategic difference between HGs and CGs given by the

evolution of the offer risk during a game. In CGs there was a

stronger correlation between the offer risk and the round number

(Spaerman’s rho = 0.88, p,2e216) than that of HG (rho = 0.61,

p = 0.01), giving a difference in the interaction between conditions

(HG and CG) and round number in the robust linear regression

(Table 1). These results suggest that subjects use a learning

strategy in CGs but a bargaining strategy in HGs [15].

EEG
We explored the oscillatory brain activity related to the

anticipation of the other’s response. We calculated the risk for

each offer and compared the 90 riskiest with the 90 safest offers

per subject. To explore changes in the global dynamics we first

compared the overall power and inter-site-phase-clustering

strength (by means of PLV) between risky and safe offers per

condition, at the electrode level. For this, we explored for changes

in the sum of the inter-site-phase-clustering strength or power

across all electrodes. First we defined a time-window of interest (0

to 1 second after the subject made the offer) and calculated a

repeated measure ANOVA. In this analysis we found that the

interaction between conditions (Human and Computer games),

offer risk (risky vs. safe offer) and frequency band (theta, 4–7 Hz,

alpha, 8–12 Hz, beta 13–25 Hz) was significant (F2 = 3.25,

p = 0.0406, Table S1 in File S1). Then, we explored the entire

time-frequency chart and, in those regions where we found

significant modulations, we explored their topographies and the

electrodes that showed significant effect (Figure 2).

Over occipital electrodes, we found a significant drop in alpha

power before the subject made the offer in both HGs and CGs

(main effect: 8–10 Hz; –0.8 to –0.2 s; O1 and O2 electrodes;

Figure 2A–B). After the subjects made the offer and before they

received the response (anticipatory phase), we found a drop in

alpha band power over left posterior temporo-parietal electrodes

only in HGs (main effect: 9–12 Hz; 0.5 to 1 s; TP8 electrode;

Figure 2A, upper panel, Wilcoxon rank sum test and cluster based

permutation test, p,0.01). During this anticipatory phase, we also

found an increase of the alpha inter-site-phase-clustering strength

prior to the difference in power (main effect: 7–10 Hz; 0.2 to 0.4 s;

FC3, C3, CP3 and Pz electrode; Figure 2A, lower panel, note that

the inter-site-phase-clustering strength was calculated based on all

possible electrode pairs). This synchrony increase was mainly in

risky offers made during HG (7–10 Hz, Figure 2C). Notably, we

did not find any difference in inter-site-phase-clustering between

risky and safe offers made during CGs (Figure 2B–D).

Since the volumetric conduction of distal sources can spuriously

generate synchrony at the electrode level, we carried out the same

analysis using both the current source density (CSD) at the

electrode level and source reconstruction at cortical level. CSD

analysis replicates the difference between human and computer

games shown in Figure 2 (See Figure S1 in File S1). For source

reconstruction, we calculated the electrical activity in 390 source

nodes over the cortex (Figure 3A), avoiding subcortical structures

where the sensitivity of EEG is poor. Then, we calculated the

strength of inter-site-phase-clustering for each node in alpha band

(7–10 Hz, where we found the main modulation at the electrode
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level), and found differences in the medial parietal and frontal

nodes between safe and risky offers for HGs but not for CGs

(Figure 3B). In order to evaluate if the strength change reflects a

change in functional network, we calculated the community

structure of the networks at group and individual levels for both

conditions at cortical source level (see Methods).

In agreement with the above result, we found that the

community structure changed between risky and safe offers in

HGs but not in CGs, at group levels, in frontal and parietal regions

(Figure 3C). We obtained seven communities per condition except

for safe offers in HGs in which we obtained six. We found a

bilateral module in dorsolateral prefrontal cortex, which was

conserved across conditions (light-blue in Figure 3C). We observed

two modules in inferior frontal gyrus and fronto-polar regions,

which were joined only in safe offers in HGs (blue and red in

Figure 3C). We also found a central module in sensory-motor

cortex, which was greater especially in the left hemisphere in risky

offers in HGs (Green). Finally, we detected one medial and two

lateral modules in parietal and occipital regions, which changed in

risky offers in HGs in comparison with the other conditions.

In order to evaluate whether this differential functional

organization is specifically related to social interaction, we

computed the individual differences in community structure

between risky and safe offer networks using the rand index (at

the cortical source level). Interestingly, the difference in commu-

nity structure was significantly correlated with the differences in

the risk of the offer only in HGs (rho = –0.44, p = 0.02), but not in

CGs (rho = 0.2, p = 0.2). Indeed, using robust linear regression, the

interaction between conditions (HGs and CGs) and risk differences

was significant (t46 = –2.05, p = 0.045) even after correcting by

power and inter-site-phase-clustering strength differences between

risky and safe offers (Table 2). This indicates that functional

network activation was specifically related to the behavior during

HGs (t44 = –2.42, p = 0.02) independently of change of strength of

inter-site-phase-clustering (p = 0.99) and possible influences of

changes in power (p = 0.04, Table 2).

Discussion

It has been proposed that the complex and flexible behaviors

that sustain human social interactions rely on the dynamic

modulation of patterns of interaction among specialized large-

scale brain systems [29]. Here, we explored such specific

modulations of patterns in brain connectivity during two types

of interaction. Crucially, we used two tasks that were exactly the

same except by the context instructed to the subject (human vs
computer partners), and we found a significant modulation in

alpha power and inter-site-phase-clustering, depending on the

social context. A recent work has shown that inter-site-phase-

clustering in alpha band at the electrode level correlates with the

activity of fronto-parietal networks [30]. In that work, using

concomitant EEG and fMRI recordings during rest, the authors

found that the inter-site-phase-clustering of alpha band was

specifically correlated with the BOLD signal of frontal pole,

inferior parietal lobe and medial parietal lobe [30]. Interestingly,

the activity of fronto-parietal networks is specifically correlated to

alpha band, and does not show correlation with other frequency

bands [30]. This specific correlation includes the anterior

prefrontal cortex and the medial parietal cortex where we found

inter-site-phase-clustering strength modulation at source level.

Although other studies have found a correlation between alpha

inter-site-phase-clustering with default mode network (see [31]),

our results are in accordance with the correlation with fronto-

parietal regions (compared Figure 2B with Figure 1 in [30]), and

match the hypothesis that the fronto-parietal network participates

in cognitive control, especially in a trial-by-trial high adaptive

control situation [32]. Moreover, evidence from intracortial

recording in monkeys, shows the existence of a prefronto-parietal

network that shows phase synchrony at in 5–10 Hz [33]. This

network increases its inter-site-phase-clustering strength during the

anticipation of top-down controlled processes [33]. Indeed,

cognitive control is highly required to solve difficult social

situations like the dilemmas recreated by game theory tasks such

as the one used here [34]. In the same line, it has been proposed

that cognitive control is necessary for humans to develop pro-

social behavior like mutual cooperation [35]. Thus, the increase in

phase synchrony that we found probably reflects the higher

cognitive demands required by the expectation of the partner’s

behavior in a repeated interaction with humans (e.g., integrating

the other’s intention, the previous interactions and the future

consequences) than that required in a computer interaction.

An important limitation of our work concerns the interpretation

of functional connectivity using EEG. Volume conduction may

cause spurious connectivity by the fact that activity in one source

can be represented in multiple measurement points [36]. In order

to lessen erroneous results, we explored the synchrony in both

electrode and source reconstruction levels, and studied global

dynamics rather that local modulations. Additionally, our results

indicated that inter-site-phase-clustering changes were dissociated

from power changes, which argues against possible volume

conduction effects. Finally, behavior was significantly related to

network dynamics independently of its overall inter-site-phase-

clustering strength and power.

It has been proposed that alpha power shows a negative

correlation with cortical activity [37–40]. Alpha power has shown

a negative correlation with the dorsal attention network and a

positive correlation with the cingulo-opercular network, with no

relation to the fronto-pariental network [41]. Works in focused

attention suggest that phase locking during the processing of a

stimulus can occur with concomitant amplitude reduction [42].

Additionally, it seems that oscillatory alpha activity operates in a

phasic manner [43,44]. Thus, the phase of pre-stimulus alpha

Table 1. Model of the risk of offers.

Scope Std. Error T-value p-value

(Intercept) 0.3747 0.1136 3.2976 0.00002

Round 0.1021 0.0125 8.1701 0.00000001

Human Games 0.3101 0.1607 1.9296 0.06

Round6Human Games 20.0686 0.0177 23.8813 0.0006

degree of freedom = 26

doi:10.1371/journal.pone.0109829.t001
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oscillations modulates visual detection [45]. Following this

evidence, it has been proposed that alpha oscillation works as a

pulsed inhibition and that its synchronized activity could have a

important role in the change of network activity in the brain [46–

48]. In our experiment, alpha inter-site-phase-clustering modula-

tion was temporally dissociated from power modulation (Figure 2).

Using the same task but only considering games among actual

human partners, we have previously shown that the power

Figure 2. Scalp levels. A, B, Time-frequency charts of the difference between risky and save offers in human (A) and computer games (B). The
upper panel shows differences in the overall power (dB) and the lower panel in strength of synchrony (inter-site-phase-clustering). C, D Inter-site-
phase-clustering strength in alpha band (7–10 Hz) in safe (blue) and risky (red) offer in human (C) and computer (D) games. Areas represent the
standard error of means. E, F, Difference between human and computer games in overall power (E) and synchrony (F). A–F, The non-significant
areas are overshadowed and for each significant area, the scalp distribution of p-values is shown. Time-frequency charts and time line plots show the
mean of the power or the sum of inter-site-phase-clustering strengths across all electrodes, and the topographic plots show the distribution of the
significant time-frequency windows highlighted.
doi:10.1371/journal.pone.0109829.g002

Alpha Band Network in Social Bargaining

PLOS ONE | www.plosone.org 6 October 2014 | Volume 9 | Issue 10 | e109829



modulation in alpha is associated with the risk of the offer in a

temporo-parietal region compatible with social processing areas

(such as the temporo-parietal junction and superior temporal

sulcus), and the entropy of the offer in regions syndicated as part of

the cingulo-opercular network [13]. Altogether, this evidence is

compatible with a functional dissociation between phase and

power modulation in the alpha band measure over the scalp [49].

Since cognitive control processes necessary to solve social

dilemmas require flexible long-range communication and integra-

tion among brain areas [5], we finally explored changes in the

cortical network structure using graph theory analysis. At the

population level, the community structure between risky and safe

offers did not differ in games with computer partners. Interest-

ingly, in human games the community structure was different

between conditions mainly in prefrontal and parietal cortex.

Although a one-to-one assignment of anatomical brain regions to

the retrieved modules is difficult to define, our results reveal an

overlap between the modules and some well-known functional

areas of the brain. The modules in inferior frontal gyrus are

compatible with the frontal parts of the fronto-parietal control

network [50]. As we mentioned above, cognitive control is an

essential process that enables us to carry out social interaction [34].

In childhood, prefrontal cortex maturation correlates with both

impulse control and cooperative behavior in social contexts [51].

In addition, alterations in cognitive control are an important factor

underlying social impairments of several psychiatric diseases such

as schizophrenia [52,53] and depression [54,55]. The notorious

differences in frontal and parietal modules in HGs may therefore

reflect the behavioral control required to carry out a social

bargaining. Across the HGs, people tended to change less their

offers, as if expecting that the others would also change their

behaviors (Table 1, and [15]). Thus on the first rounds, people can

tolerate rejection and do not change their behavior in order to

obtain more acceptances on the later rounds [15,56]. However, to

maintain this strategy, a greater cognitive control is required. In

accordance with this interpretation, we found a specific correlation

in HGs, where people who presented less difference between high-

risk and low-risk offers showed a greater functional network

differentiation (Figure 3D).

The functional networks that we found also include a central

module in sensory-motor cortex. This module is compatible with

the source of mu rhythms [57] whose power decreases (also called

suppression or local desynchronization) has been related to mirror

system activity during social games [58], motor coordination

between humans [59] and the imagination of social interactions

[60]. Moreover, recent work has shown that power in alpha range

over sensory motor cortex is related to facial emotion recognition

and it is negatively correlated with connectivity of the motor

sensory cortex with other cortical areas [61]. In our experiment we

found that the main modulation of global alpha synchrony was

temporally dissociated from power modulation (Figure 2). How-

ever, the change in power was related to the community structure

and not to the overall synchrony as the robust linear model shows

Figure 3. Source level. A, Cortical areas that represent each node in
the global network (colors represent node indexes in random order). B,
Areas where the synchrony (inter-site-phase-clustering) differences

between risky and safe offers in human game were significant (FDR,
q,0.05). C, Community structure of the population networks by
conditions (colors represent de community index). Note that there are
no main variations between risky and safe offers in the computer game,
while there is a notorious variation in human games. D, Correlation
between the differences in the risk of the offers made (logit of the
probability to acceptance, risky offers – safe offers) and the change of
the community structure per each subject. Note that only in human
games there is a significant correlation. Blue depicts human games and
red computer games.
doi:10.1371/journal.pone.0109829.g003
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(Table 2). This most likely reflects that the relations between phase

synchrony and power is specific for each cortical area. Due to the

low spatial resolution of our source reconstructions, we cannot

accurately test these local differences. Finally, the spatial variations

of the modules in lateral parietal region could be related to

attentional and control networks that present nodes in this region

[62,63]. Thus, the variation of community structure over these

networks could reflect flexible changes in attentional and control

processing during social interactions.

In conclusion, our results complement evidence that shows that

during social interaction, humans establish flexible global interac-

tions among different brain regions [6]. More specifically, we show

that changes in the functional network in alpha band range takes

place during social interaction, which could reflect cognitive

control requirements to maintain an ongoing bargaining. Inter-

site-phase-clustering (phase synchrony) of alpha oscillations could

therefore serve as a mechanism by which cognitive control areas

exert modulation over and receive information from social

specialized brain areas in order to adapt behavior to current

demands and changing social contexts.
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17th International Conference on Biomagnetism Advances in Biomagnetism –
Biomag2010. Dubrovnik (Croatia): Springer Berlin Heidelberg, Vol. 28. 109–

112. doi:10.1007/978-3-642-12197-5_21.

18. Lin F-H, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, et al. (2006)

Assessing and improving the spatial accuracy in MEG source localization by
depth-weighted minimum-norm estimates. Neuroimage 31: 160–171.

doi:10.1016/j.neuroimage.2005.11.054.

19. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase

synchrony in brain signals. Hum Brain Mapp 8: 194–208.

Table 2. Model of the difference in modularity between risky and safe offer (Rand Index).

Scope Std. Error. T-value p-value

(Intercept) 0.8329 0.0539 15.4663 0

Risk diff. 0.0639 0.0939 0.6801 0.5008

Strength diff. 0 0.0003 –0.0093 0.9926

Power diff. 0.5665 0,268 2.1138 0.0415

Human Games –0.128 0.0711 –1.7992 0.0804

Risk diff.6Human Games –0.2923 0.1203 –2.4295 0.0202

degree of freedom = 44

doi:10.1371/journal.pone.0109829.t002

Alpha Band Network in Social Bargaining

PLOS ONE | www.plosone.org 8 October 2014 | Volume 9 | Issue 10 | e109829



20. Fisher N (1995) Statistical analysis of circular data. Cambridge University Press.

21. Pons P, Latapy M (2005) Computing communities in large networks using
random walks (long version). J Graph Algorith Appl 10: 191–218.

22. Newman MEJ (2006) Modularity and community structure in networks. Proc

Natl Acad Sci U S A 103: 8577–8582. doi:10.1073/pnas.0601602103.
23. Valencia M, Pastor M a, Fernández-Seara M a, Artieda J, Martinerie J, et al.

(2009) Complex modular structure of large-scale brain networks. Chaos 19:
023119. doi:10.1063/1.3129783.

24. Rand WM (1971) Objective Criteria for the Evaluation of Clustering Methods.

J Am Stat Assoc 66: 846–850.
25. Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and

MEG-data. J Neurosci Methods 164: 177–190. doi:10.1016/j.jneu-
meth.2007.03.024.

26. Zamorano F, Billeke P, Hurtado JM, López V, Carrasco X, et al. (2014)
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